• Bill Blythe, SMC Corporation ANZ’s energy conservative group manager.
    Bill Blythe, SMC Corporation ANZ’s energy conservative group manager.
Close×

Energy experts from SMC share their thoughts on how companies can optimise their energy efficiency in-line.

Pneumatic processes account for around 20 per cent of all factory power consumption. However, according to Andy Still, SMC EU industry projects manager for energy, when air is optimised, it becomes a gamechanger that is proven to increase energy efficiency.

He said while it is possible to introduce compressed air efficiencies, today, some plants still suffer from 20 to 50 per cent leakage rates, as well as other forms of wastage.

“It’s common knowledge that the typical operating pressure (for main compressed air lines) in industrial plants is around 7-bar,” Still explained in a recent white paper. 

“However, not so commonly known is that by simply lowering the pressure to 5-bar, facilities can reduce their energy consumption up to 15 per cent. Dropping the pressure to 4-bar offers savings of up to 29 per cent. 

“The global understanding of pressure reduction is that it will effect performance. Although this statement is true for some equipment, it must be said that most processes can operate efficiently at reduced pressures.”

Bill Blyth, SMC Corporation ANZ’s energy conservative group manager, echoes this sentiment.

“While performance remains critical in every plant, SMC has found an effective and reliable way to reduce pressure without compromising output,” Blyth said. 

“The objective is to make sure that the available power is utilised in an optimised way and to smooth the demand peaks.”

Identifying the issues

Globally, SMC’s energy saving team can carry out an energy saving audit designed to address these opportunities. 

“The first step is to evaluate the compressor’s operations and address the filtration components and air distribution to ensure the system will not exhibit unnecessary pressure drops, and deliver efficient flow across the entire pneumatic circuit,” said Still. 

Andy Still, SMC EU industry projects manager for energy.
Andy Still, SMC EU industry projects manager for energy.

“SMC determines the air quality by carrying out an air quality analysis. Then, we investigate various process operations throughout the site, identify opportunities, and quantify existing waste.

“Finally, our experts investigate any equipment exhibiting increased air demand, and identify compressed air inefficiencies and energy costs.” 

These initiatives determine any existing conditions, as well as existing and potential minimum pressure requirements for a plant’s compressed air system.

Based on the outcome of the energy audit, SMC provides recommendations and solutions, including estimated costs to eliminate inefficiencies, and assure system reliability when reducing pressure and flowrates. 

“So often, companies think that the outcome of an audit will incur significant expenditure – this is not always the case,” added Blyth.

“In many instances, it is possible to reduce the operating pressure, reduce the flowrates, and eliminate waste without the need for any significant system upgrades.” 

Still adds that the order of priority must be: the elimination of waste (including leaks), the smoothing of flow peaks, the reduction in excess pressure, and the realisation of improved energy efficiency at each of the components. 

The elimination process

SMC believes that much like a car in need of a service, if a pneumatic system is not properly maintained, costly issues can arise.

“We identify waste, often simply by repairing seals of tubing for instance. However, this action only acts as a temporary improvement,” Still said. 

“Further leaks will inevitably occur, and small leaks will eventually become larger ones. There needs to be a policy in place that assures leak repair as an ongoing, continuous project.

“A leak detection system (as simple as an inline flow monitor) can easily identify future leakage with associated costs and wasted energy.” 

When looking to components that generate excessive compressed air demand, Still said that air blow systems must be considered. 

“These can account for around 42 per cent of global compressed air consumption, and if not optimised, can compromise the entire plant system efficiency,” Still said. 

“To help counter this issue, as an example, we can provide a solution that reduces air blow consumption up to 85 per cent, through more efficient air control technology or investigate alternatives to replace the air blow system.”

This choice involves a small investment, but the fast return is due to the typically high consumption of air blow equipment. It is also important to consider vacuum systems, which represent nine per cent of global consumption.

Example being a vacuum unit featuring SMC’s energy-saving digital pressure switching enables plants to reduce air usage by 93 per cent.

“Smart regulation with appropriate valve technology also serves to balance the circuit, reduce peaks and allow the use of lower pressure when possible,” added Still.

“For instance, actuator return (non-working) strokes can often function with a lower operating pressure – sometimes 2-bar or less.” 

Achieving 75% less energy consumption

“A next step, and not such a complicated one, will be to optimise any single machine components – small improvements can generate big gains,” commented Still.

The installation of a digital gap checker in machining applications (for workpiece placement confirmation) can also make a notable difference, as it provides a 60 per cent reduction in air consumption. 

This detection principle ensures a flow rate of 0L/min when the workpiece is seated in its fixture.

The combination of reduced operating pressure and system improvements brings huge savings in energy consumption – usually around 75 per cent. 

“SMC offers a dedicated energy saving support to our customers. Customers can feel at ease knowing that we have the knowledge and expertise to lower system pressure without risk,” concluded Blyth.

Food & Drink Business

With global taste and food ingredient company Kerry celebrating its 50th year, Kim Berry caught up with John Cahalane, the CEO and president of Kerry Asia Pacific, Middle East & Africa.

Wide Open Agriculture (WOA) officially opened its pilot plant-based protein facility in Western Australia, which will produce a breakthrough, eco-friendly protein called Buntine Protein.

An alliance of food industry associations across the supply chain has formed in response to ongoing supply disruptions, rising inflation, and equity between large retailers and independents.